skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Daniel, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. A series of 1,3,5,7-tetraphenyl-aza-BODIPY dyes functionalized with electron-donating or withdrawing groups at the para-positions of the phenyl rings on either the 1,7- or 3,5-positions were synthesized and characterized. The electron-donating group selected was –NH2, while the electron-withdrawing groups spanned a range of strengths, from strong (-NO2) to moderate (-NH3+) and mild (-Ndouble bondCdouble bondS). The structural modifications were strategically implemented to investigate their impact on the dyes photophysical properties. Spectroscopic studies revealed that these dyes exhibit intense absorption and emission in the near-infrared (NIR) region (678–855 nm). The photophysical properties, including molar absorptivity, fluorescence quantum yield, and Stokes shift were found to depend significantly on both the electronic nature (donating/withdrawing) and positioning (1,7- vs. 3,5-) of the substituents. Complementary computational studies provided insights into the electronic structures and excited-state dynamics, corroborating experimental observations. Time-dependent density functional theory (TD-DFT) calculations revealed that the electron density distribution and the frontier orbitals’ energies and shapes were significantly influenced by the electronic effects of the substituent groups. This study underscores the tunability of aza-BODIPY dyes through rational molecular design, enabling precise control over their optical properties for tailored NIR applications. 
    more » « less
    Free, publicly-accessible full text available January 1, 2027
  3. Komeili, Arash (Ed.)
    ABSTRACT The bacterial nucleoid is not just a genetic repository—it serves as a dynamic scaffold for spatially organizing key cellular components. ParA-family ATPases exploit this nucleoid matrix to position a wide range of cargos, yet how nucleoid compaction influences these positioning reactions remains poorly understood. We previously characterized the maintenance of carboxysome distribution (Mcd) system in the cyanobacteriumSynechococcus elongatusPCC 7942, where the ParA-like ATPase McdA binds the nucleoid and interacts with its partner protein, McdB, to generate dynamic gradients that distribute carboxysomes for optimal carbon fixation. Here, we investigate how nucleoid compaction impacts carboxysome positioning, particularly during metabolic dormancy when McdAB activity is downregulated. We demonstrate that a compacted nucleoid maintains carboxysome organization in the absence of active McdAB-driven positioning. This finding reveals that the nucleoid is not merely a passive matrix for positioning but a dynamic player in spatial organization. Given the widespread role of ParA-family ATPases in the positioning of diverse cellular cargos, our study suggests that the nucleoid compaction state is a fundamental, yet underappreciated, determinant of mesoscale organization across bacteria. IMPORTANCEBacteria can organize their internal components in specific patterns to ensure proper function and faithful inheritance after cell division. In the cyanobacteriumSynechococcus elongatus, protein-based compartments called carboxysomes fix carbon dioxide and are distributed in the cell by a two-protein positioning system. Here, we discovered that when cells stop growing or face stress, these positioning proteins stop working, yet carboxysomes remain distributed in the cell. Our study shows that the bacterial chromosome, which holds genetic information, can also act as a flexible scaffold that holds carboxysomes in place when compacted. This insight reveals that the bacterial chromosome plays a key physical role in organizing the cell. Similar positioning systems are found across many types of bacteria; therefore, our findings suggest that nucleoid compaction may be a universal and underappreciated factor in maintaining spatial order in cells that are not actively growing. 
    more » « less
    Free, publicly-accessible full text available October 8, 2026
  4. ABSTRACT Impervious cover (IC) is a common metric for assessing the degree of urbanisation in watersheds. However, there are different methods for determining IC, and use of IC correlation with urban watershed response to hydrologic and geochemical inputs can be strongly influenced by the end members (IC below 10% and above 40%). The resolution of the imagery (e.g., 1 m vs. 30 m) used to measure IC can influence the estimate of IC, with differences up to 15% observed between these two resolutions for 21 watersheds along the east coast of the United States. The differences are greatest in the middle range between 10% and 40% IC. When using IC for correlation with urban watershed responses such as discharge flashiness or median solute concentrations, fits with R2between 0.4 and 0.78 were obtained when including end members of IC from 0% to 50%. However, when trying to distinguish behaviour between urban watersheds that fall in the middle ranges of IC, these same parameters do not correlate well with IC. Correlations fail significance tests, can switch direction, and fall below an R2of 0.1 without the end members of very low or very high IC. Because of improved accuracy, the finest resolution is preferred when available, and mixing IC estimation methods should be avoided. Furthermore, using regressions that include end members may not contribute to differentiating how IC in the 10%–40% range impacts hydrologic and geochemical responses in urban watersheds. Understanding this middle range of IC is important for comparing urban and suburban watersheds or planning watershed development to minimise impacts. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  5. Public transit systems are crucial to mobility and access in cities throughout the world. This article addresses the importance of these transit systems in San Antonio, Texas. We show how transit systems exacerbate race and class inequality and the accessibility of city spaces with a focus on San Antonio’s buses. Using mixed methods (surveys, interviews, ethnography, and document analysis) we illustrate that poor and working-class Latinx communities experience reduced access to resource rich areas of the city when they are dependent upon the city’s public transportation. To better describe this experience we use the concepts, enclaves of exclusion and enclaves of inaccessibility. Our findings show that mobility through San Antonio for poor and working class Latinxs is limited especially for people in these communities who rely on public transit. This experience with these public transit systems often renders them as individuals who do not belong in certain neighborhoods, and ultimately reinforces the longstanding histories of race and class segregation in San Antonio. 
    more » « less
    Free, publicly-accessible full text available July 23, 2026
  6. Teeth have been a prominent feature of most vertebrates for 400 million years, and the core regulatory network underlying embryonic tooth formation is deeply conserved. In frogs, however, odontogenesis is delayed, occurring instead during the postembryonic metamorphosis and resulting in teeth that are restricted to the upper jaw and palate. Developmental-genetic mechanisms that underlie tooth formation in frogs are poorly understood. We assessed if the genes underlying odontogenic competence are conserved in the late-forming teeth of frogs; if unique keratinized mouthparts, which function as an alternative feeding tool in anuran larvae, impede tooth induction; and if transient tooth rudiments form in the anuran mandible. We demonstrate that the induction of tooth development is conserved in the frog upper jaw, which displays odontogenic band expression patterns comparable to those of other vertebrates. There is, however, no evidence of tooth development initiating in the mandible. Adult teeth emerge before larval mouthparts degenerate, but their location may be spatially constrained by keratin. Gene expression patterns of keratinized mouthparts and teeth overlap. We hypothesize that the novel mouthparts of tadpoles, which we characterize as ectodermal appendages, may have originated by partially co-opting the developmental program that typically mediates development of true teeth. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  7. As blue intensity (BI) methods are increasingly employed to generate temperature-sensitive tree-ring records around the globe, the influence of intra-site variation in elevation on climate-growth relationships for BI parameters remains largely unresolved. Here, we develop six latewood blue intensity (LWBI) chronologies along an elevational gradient for two montane conifer species, Abies concolor var. concolor (Gordon & Glend.) Lindl. Ex Hilderb and Picea engelmannii Parry ex Engelm., growing in the arid southwestern United States. In this first documented study to examine the climate response of LWBI from A. concolor, we find positive, significant (p < 0.05) correlations between the LWBI chronology from the highest elevation plot and spring–summer temperatures (April–August, r > 0.46). Moreover, the positive temperature response of A. concolor is generally stronger and more temporally stable than for P. engelmannii across varying seasonal windows. In comparing the differences in climate response across species and elevation, we document distinct clinal relationships between the temperature response of LWBI for A. concolor, where both the strength and temporal stability of the positive temperature signal increases with elevation. Meanwhile, the mid-elevation P. engelmannii demonstrate the highest climate sensitivity. As such, our findings contribute to a more comprehensive understanding of how elevation influences the type and strength of the climatic information embedded within the LWBI parameter from arid, montane conifers growing near their historical range margins. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  8. MManga (Ed.)
    Hydrothermal vent temperatures fluctuate in response to transient magmatic and tectonic activity at the axis of mid-ocean ridges (MORs) and modulate energy fluxes from the deep Earth to the ocean. Such fluctuations have thus far only been documented on time scales of minutes to years, because of the scarcity of long, continuous observations. Here, we assemble a ~35-year-long time series of exit fluid temperatures from five hydrothermal vents on the East Pacific Rise axis, between 9°46’-51’N. This dataset reveals a steady increase in maximum venting temperatures atop the central part of the axial magma lens (AML), from ~350 °C to ~390 °C between the 1991–92 and 2005–06 eruptions. Temperatures decreased back to ~350 °C shortly after the 2005–06 eruption and have been rising ever since. We interpret the temperature increase as a result of a steady decrease in upflow zone permeability caused by the steady inflation of the AML compressing the oceanic upper crust. Using laboratory-determined pressure–permeability relations, we estimate crustal pressurization rates of 0.38 MPa/y (1992–2005) and 0.33 MPa/y (post-2006), consistent with geodetic observations from 2009–2011. Decadal fluctuations in hydrothermal vent temperatures likely mimic the rate of AML pressurization, yielding valuable new constraints on the dynamics of magmatic replenishment and eruptions at MORs. Notably, this temperature time series underpinned our forecast of the April 2025 eruption at the study site. 
    more » « less
    Free, publicly-accessible full text available October 21, 2026
  9. The literature sometimes uses slow algorithms to find minimum-length continued-fraction differential addition chains to speed up subsequent computations of multiples of points on elliptic curves. This paper introduces two faster algorithms to find these chains. The first algorithm prunes more effectively than previous algorithms. The second algorithm uses a meet-in-the-middle approach and appears to have a limiting cost exponent below 1 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  10. Free, publicly-accessible full text available June 9, 2026